Human myelin proteome and comparative analysis with mouse myelin.
نویسندگان
چکیده
Myelin, formed by oligodendrocytes (OLs) in the CNS, is critical for axonal functions, and its damage leads to debilitating neurological disorders such as multiple sclerosis. Understanding the molecular mechanisms of myelination and the pathogenesis of human myelin disease has been limited partly by the relative lack of identification and functional characterization of the repertoire of human myelin proteins. Here, we present a large-scale analysis of the myelin proteome, using the shotgun approach of 1-dimensional PAGE and liquid chromatography/tandem MS. Three hundred eight proteins were commonly identified from human and mouse myelin fractions. Comparative microarray analysis of human white and gray matter showed that transcripts of several of these were elevated in OL-rich white matter compared with gray matter, providing confidence in their detection in myelin. Comparison with other databases showed that 111 of the identified proteins/transcripts also were expressed in OLs, rather than in astrocytes or neurons. Comparison with 4 previous myelin proteomes further confirmed more than 50% of the identified proteins and revealed the presence of 163 additional proteins. A select group of identified proteins also were verified by immunoblotting. We classified the identified proteins into biological subgroups and discussed their relevance in myelin biogenesis and maintenance. Taken together, the study provides insights into the complexity of this metabolically active membrane and creates a valuable resource for future in-depth study of specific proteins in myelin with relevance to human demyelinating diseases.
منابع مشابه
Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci.
Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we id...
متن کاملProgesterone Enhanced Remyelination in the Mouse Corpus Callosum After Cuprizone Induced Demyelination
Background: Progesterone as a sex steroid hormone is thought to affect and prevent demyelination, but its role in promoting myelin repair is far less investigated. In this study, remyelinating potential of progesterone in corpus callosum was evaluated on an experimental model of MS.Methods: In this experimental study, adult male C57BL/6 mice were fed with 0.2% (w/w) cuprizone in ground breeder ...
متن کاملMyelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice
Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...
متن کاملMyelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice
Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 34 شماره
صفحات -
تاریخ انتشار 2009